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A cylindrical sound pulse in a rotating gas 

By L. E. FRAENKEL 
Aeronautics Department, Imperial College, London* 

(Received 29 October 1958) 

This paper deals with the propagation of a sound pulse into a gas which initially 
has solid-body rotation and constant temperature, the initial pressure and density 
increasing outwards like ex, where x is the square of a certain dimensionless radial 
co-ordinate. The perturbations are due to a source-like disturbance on the axis of 
symmetry, which begins to act at time t = 0: most attention is paid to source 
strengths which vary in time like a Dirac pulse or a step function, but the 
following remarks apply generally. 

Immediately behind the wave front the perturbation velocity and temperature 
decay like e-is, while the (absolute) perturbation pressure and density grow like 
ets (the relative pressure and density increments, which are referred to local 
conditions in the undisturbed state, then also decay like e-*"). The rotation also 
introduces oscillations in flows which, with the same disturbance at the origin and 
no rotation, would vary monotonically with time at a given point. 

1. Introduction 
The problem studied in this paper is the following. An infinite mass of perfect 

gas rotates with constant angular velocity about an axis of symmetry and is at 
constant temperature: the pressure and density increase radially. At time t = 0 
a weak release of mass or of energy begins at the axis, or a small cylinder begins to 
expand there, so that cylindrical sound waves radiate outwards. This problem 
seems worth while for two reasons. First, interest has recently revived in all flows 
of a fluid with solid-body rotation: these are simple examples of flows in which 
vorticity plays an important role. Secondly, the problem involves the study of 
sound waves propagating into a variable medium. 

The rotation introduces two principal effects. On a linearized theory the 
Coriolis force restrains radial displacements of a fluid particle in precisely the 
same way that a spring restrains the motion of a solid particle, and this effect 
would be expected to give the flow an oscillatory character. In  incompressibIe 
flows of a rotating fluid with an axial velocity (see, for example, Squire 1956) this 
oscillatory behaviour is very evident. In  addition, the variable pressure of the 
undisturbed medium introduces a damping effect which dominates conditions 
immediately behind the wave front. 

* This work was done while the author was at the Guggenheim Aeronautical Laboratory, 
California Institute of Technology. 
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2. Formulation 
Let (r,  0) be polar co-ordinates, (u, v) the corresponding components of velocity, 

( p , ~ ,  2') the pressure, density and temperature, c the sound speed, and y the 
specific-heat ratio of a perfect gas. Conditions in the undisturbed state are 
denoted by suffix ( ) o ,  and perturbations by suffix ( )l. 

For the undisturbed state we take steady, solid-body rotation and constant 
temperature : 

The radial momentum equation becomes 
uo = 0, vo = Rr, To = constant. (2.1) 

-- 1 4 P O T  - -par = - - 
Po Y Po 

where lettered suffices denote partial differentiation; hence 

The rates of strain and viscous stresses all vanish, and there is no dissipation, no 
heat conduction, and no change of entropy along a streamline, so that this basic 
flow is an exact solution of the Navier-Stokes equations. The basic state is 
presumably that which would result in the laboratory from the prolonged 
spinning of a cylindrical container of gas. 

Henceforth we neglect viscosity and heat conduction. The disturbances are 
to be functions of (T, t )  only, and there is no velocity parallel to the axis. In  
writing the equations of motion, we permit the existence of weak distributed mass 
and heat sources of strength &(m) and &(h), respectively. Then 

@P)l + (.fPU)T = 4F), 

Writing p = po(r)  +pl(r,  t ) ,  etc., and linearizing the disturbance terms, we obtain 

PPl)t + (rPo%)r = 4 ? ( m ) 9  (2.7) 

1 P1 
u , - 2 ~ v 1 =  --pP,,+--,p*, Po PO 

v,, + 2Qu1 = 0, 

P, - C%P1r - (Y - 1) POtU1 = (Y - l)'&(h). 

(2.9) 
(2.10) 

If 6 is a radial displacement, such that & = uI to first order, the momentum 
equations (2.8) and (2.9) may be written 

I P1 
&I + 4Q2E = -p, PI, + 1 pw, 

Po 

which shows the spring-like effect of the Coriolis terms. 
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It is convenient to introduce rpoul = q,  say, in place of ul. The function q is 
1/277 times the mass flow across a circle r = constant and will be called the 
‘outflow ’. Cross-differentiating (2.8) and (2.10) to eliminate pl, and substituting 
for plt  from (2.7) and for vlt from (2.9), we obtain 

We have retained source terms only to show that mass and heat sources on the 
axis make similar contributions: hereafter we consider only sources on the axis, 
and incorporate their presence in boundary conditions; the equations will be 
written for source-free flow. 

In  terms of ul( = u) equation (2.11) is then 

1 1 1 yo2 522 

r r2 cf c; c; 
uff+-ur--u--u +-rur-(4-y)-u = 0. (2.12) 

Alternatively, we may introduce a stream function $ such that 

$t = rpou1 = q> $7 = -rp1, (2.13) 

and such that $ = 0 ahead of the wave front bounding the disturbed region; 
$ is then 11277 times the perturbation mass between infinity and a circle r = con- 
stant. If (2.11) is integrated with respect to time, the arbitrary function of r 
which occurs is zero in view of conditions ahead of the wave front, and there 
results 

u1 and p1 are given in terms of $ by (2.13), and 

*J 

2Q v1 = -- 
Y o  

p1 = (y-  1) n2$h-c2- 
O r ’  

(2.14) 

(2.15) 

Equations (2.12) and (2.14) involve the wave equation operator together with 
a damping term (of opposite sign in the two equations) and a stiffness term. 

3. The propagation of weak shocks and expansion waves 
The importance of the damping term immediately behind a wave front can be 

seen rather simply. We introduce characteristic variables cot + r = a, cot - r = p, 
and write yQ2/2c; = k; then (2.14) becomes 

If now $/ is discontinuous across ,8 = b,  say, while $, the perturbation mass, is 
continuous, we write 

b- 
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and obtain from (3.1) 

I 4j,-lCb+k(a-b) 2 j = 0, 

which may be integrated to 

Then, by (2.2), 
j = const. r* exp ( &krz). 

+ 31: = er-* exp ( - +krZ) , 

where E is a (small) constant. Also, since II., is continuous, 

[%-?I11 = 0, 

and since T) is continuous, (2.15) shows that 

[ V J g f  = 0) [p,-c;p,];t = 0, k--- - - PO pll’+ b- 
= 0. 

(3.3) 

(3.4) 

These equations show that the strength of a shock (e > 0) or centred expansion 
wave ( E  < 0) ,  as measured by the relative perturbations of the linear theory, 
decays rapidly when rotation is present (k > 0). Note that the Coriolis force, 
which is represented by the last term of (3.1), played no part in the derivation of 
this result. The effect is due to the fact that the shock (say) is propagating into a 
region of increasing pressure and density, so that compressive wavelets are 
continuously reflected back towards the axis along the other family of charac- 
teristics, and this reduces the relative shock strength. These reflexions are not of 
a conventional type. If we imagine the undisturbed gas to be divided into a large 
number of annular layers, in each of which the pressure and density are constant, 
we must also imagine that cylindrical ‘membranes ), representing the centrifugal 
force which actually balances the pressure gradient, separate the layers and 
support the pressure differences. It is difficult to draw conclusions from this 
model, because the conditions that apply across the membranes in the disturbed 
state are not obvious, but we may observe that the membranes are fairly ‘rigid’ 
in the following sense. Whereas they initially support pressure differences ac- 
cording to the law 

= 2krar, 
Po 

where 6r is the width of an annular layer, they only transmit pressure behind 
a shock according to the law 

(The attenuation represented by the r-4 in (3.2) has nothing to do with the 
membranes. ) 

To obtain a slightly more realistic picture of the propagation of a discontinuity 
than that given by the simple linearized theory, we apply the method of Whitham 
(1952). Since no real disturbance can be completely concentrated on the axis, we 
suppose that the perturbations are due to a cylinder r = R(t) (R’ < c,,). In the 
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linearized solution cot is now replaced by P + r ,  where /3 is to be interpreted as 
constant on a characteristic curve of a higher approximation, and is defined by 

= 1+-+ ..., /3 = cot-r on r = R(t) .  (3.5) 
CO 

If the equation r = R((/3+r}/co) is written r = R*(/3), we then have 

Two criticism,s can be made of this representation in the present context: (if the 
a-characteristics and the particle paths now also carry significant disturbances, 
and (ii) the algebra of the solution (ul,cl)  is so complicated that (3.6) is not 
actually usable. Accordingly, we restrict attention to the case of a shock or 
expansion fan moving into undisturbed fluid; neither objection then is relevant. 
Let R(t) = R, for t ,< Ro/co, and let R' be discontinuous at t = Ro/co such that 

Equations (3.2) to (3.4) apply, with /3 = b = 0, and with 

8 = - 2rl R, 4 exp (,tkRf). 
CO 

By (3.6) the curves /3 = 0- and /3 = O +  become (figure 1) 

where the integral can be expressed in terms of the incomplete gamma function. 
Hence for a shock (e > 0) the regions ,8 < 0 and /3 > 0 overlap in the rt-plane, 
while for an expansion wave there is a gap between these domains in the rt-plane. 
The significant point is that, whereas with k = 0 the width of these regions is 
O(er4) for r +- 00, it is now O(e). Hence in the case of a shock, only a narrow band 
of characteristics 1/31 < O(e) enters the overlapping region in which the shock 
must lie. 

To fit the shock, t = t,(r) say, we note that to our approximation the shock 
equations are as follows ([ ] and 0 now denote discontinuities and mean values 
across the shock): 

= 0) 

dt* 
O dr 

c -  

If k is bounded away from zero, the shock may be drawn halfway betweenp = 0 - 
and /3 = 0 + ,  so that 

(3.10) 

41 Fluid Mech. 5 
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and the shock conditions are satisfied to sufficient accuracy. For, by (3.3) and 
(3.4), the equations (3.8) are satisfied exactly across /? = 0; the shock now lies at 
@ = - (O(E)(  and p = lO(e)I , and since variations with are continuous on either 
side of /? = 0, the equations (3.8) are still satisfied within an error of O(e2). 
Similarly, the characteristic slopes at the shock will be those of /? = 0- and 
@ = 0 + within an error of O(e2), so that (3.9) is satisfied to sufficient accuracy. 

FIUURE 1. (a) The ’overlapping region’ near a shock; (b) the ‘gap’ produced by a centred 
expansion wave. Some adjacent characteristics = constant are also shown qualitatively. 

The shock trajectory (3.10) could in fact have been obtained by simply in- 
serting in (3.9) the results of the simple linearized theory for cot - r = 0 + , but 
the shock would then lie outside the disturbed region of that theory. The advan- 
tage of the method used is that it shows how the shock fits into the general flow 
pattern. 

In  the case of a centred expansion wave, the gap may be filled by taking a linear 
variation of u1 and c1 across it: this is sufficient to our approximation. 

We conclude that, as far as the propagation of discontinuities is concerned, the 
simple linearized theory (for k > 0 )  is uniformly valid, since the relative perturba- 
tions decay rapidly, so that the positions (cot - r )  of characteristics and shocks are 
predicted correctly within an error of O(s) for all r. It would therefore be sur- 
prising if the theory, applied to an expanding cylinder of finite radius, contained 
non-uniformities in the interior part of the field, but discussion of this point is 
difficult and beyond the scope of the present paper. 

4. Waves propagating from the axis 

the axis: let their strength per unit volume be 
We turn to the main problem of this paper. Consider sources concentrated on 
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where 6 is the Dirac function, andf(t) = 0 for t < 0. Integration of (2.11) from 
r = 0 to r = O +  shows that, equivalently, the total source strength per unit 
length of axis is 

The resulting flow may be visualized as due to the mass and energy release of 
(4.1), or as due to a small cylinder of cross-sectional area 

Q(0 + , t) = f". (4.2) 

the boundary condition ru, = RR' being satisfied on r = 0 instead of on r = R. 
We shall examine in detail the solution when the source strengthf'(t) is a Dirac 
pulse (and also one or two closely related cases): in principle, all other solutions 
can be obtained by superposition of that for a pulse, but in practice this can be 
a difficult task. 

The solutions to be considered are, of course, not physically valid in the im- 
mediate neighbourhood of the axis, at or near times when the source is dis- 
charging. (In the case of a cylinder, expanding and contracting for 0 < t < t,, 
R/cotl, E / c ,  and R"t,/co must all be < 1 and continuous if (4.3) is to lead to a 
physically valid solution in r 2 R for all t.) Further, it will be found that iff(t) 
begins more strongly than tg the velocity behind the wave front is infinite. 
However, these features are also present in the theory for irrotational flow, and 
therefore do little to hinder the study of rotational effects which is our main 
purpose here. 

In  place of r and t we introduce the dimensionless variables 

That x is in fact a natural co-ordinate of the problem is suggested by the fact that - _ _  
po = po(0)  ex. Then (2.14) becomes 

1 a2 

2y a72 
x$xx-x$z-- (-+4) $ = 0. (4.4) 

The boundary conditions, which specify the perturbation mass at the axis and the 
absence of disturbances ahead of the wave front, are 

If the Laplace transform 
- 
$ = p e-pr $(x, 7 )  d7 

0 
is introduced, there results 

(4.6) 
p2+4 

2Y 
xFxz - xpx - a 3  = 0, where a = - . 

This is a case of the confluent hypergeometric equation: in the notation of 
Erdklyi (1953) and Tricomi (1 954) the solutions are 

xO(a+ 1,2; z) 

with the following properties. 

and Y(a, 0; x) = xY(a+ 1,2; z), 

41-2 



Here arga = argp = 0 on the positive real p-axis. Equation (4.8) suggests that 
the @-solution should be rejected here, and (4.9) confirms it. For, in view of the 
inversion integral of the Laplace transform, (4.9) shows that the @-solution 
represents an incoming wave, which vanishes only for co t + r < 0 ;  whereas Y repre- 
sents an outgoing wave which vanishes for c,t--r < 0, as required by (4.5) (ii). 
Hence - 

@ = r(a+ ~ ( a ,  0; m ~ ) ,  
and (4.10) 

where 9 is the Bromwich path C - ico to C + ioo with C > 0. 
To relate this result to those of the previous section, we suppose that 

f ( t )  - tYH( t ) / v !  for t --f 0 (v 2 0 ) ,  

where H ( t )  is the Heaviside function. (In applications such anf ( t )  must, of course, 
be multiplied by a small parameter 8.)  Applying (4.9) and S(p) - (Qp)" for 
p -+ co, and closing the contour of (4.10) with a large semicircle in 9 p  > 0, we 
confirm that @ = 0 for r > cot;  evaluating the integral for r < cot we find that 
immediately behind the wave front 

(4.11) 

The case studied in Q 3, in which @,. and @t have finite discontinuities, is v = #; if 
v < $ the theory is unrealistic near the wave front, and if v > $ the strength of the 
wave front is zero. The effects of rotation, however, are contained entirely in the 
factor etx,  which becomes e-gx, in the relative perturbations, and has already been 
discussed. 

Consider now the solution 

(4.12) 
9 4 0 )  = 2?rdS,-I,r(a+1)'Y(a,0;x)dlP, 1 epT 

for which @((,)(O,T) = H(T) ,  q(o)(O, 7) = Q8(Qt) = 8(t), so that the source strength 
is a Dirac pulse. For any other source strength 
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First we verify that when x + 0 and T -+ 0 such that 2 / 7 2  is finite, the irrota- 
tional solution is recovered. Let 

Now for T + 0 (Erdklyi, 1953, p. 266) 

ryT = seK,(se) [i + 0(r2)1, 

where K ,  is the modified Bessel function of the second kind and of order one. 
Hence 

1 
(o) - - es6K,(s6) ds [ 1 + 0(r2)] 

@ - ,,is, 
= ( 1 - @)-* [ 1 + o(T2)], (4.13) 

and this is the irrotational solution. 
A wave-front approximation which, while in principle no better than (4.1 1) 

(with Y = 0) ,  actually gives better numerical agreement with the full solution, 
may be obtained as follows. We observe that the Coriolis force contributed the 
stiffness term - 4C12$/ci in (2.14), or - 2$/y in (4.4), and that this is lost when the 
approximation a N p2/2y €or p -+ co is made in (4.9). Accordingly, this approxi- 
mation is not made: then 

and the integral may be evaluated approximately by the methods of steepest 
descent or of stationary phase. There results 

(4.14) 

This is still only valid for small values of ( Y T ~  - 2x), but it appears to hold over a 
somewhat wider range than (4.1 l),  and it also gives a qualitative indication of the 
oscillatory character of the flow for SZ > 0. 

To obtain a series representation of $(o), we note that in (4.12) the only singu- 
larities of the integrand are simple poles a t  the origin and a t  those points on the 
imaginary p-axis where u is a negative integer. For p -+ 00 and 9 p  < 0, 

r (a+  I )Y(U,  0; x)  - O[atexp{~(ax)+)], 

so that the integral around a large semicircle in 92p < 0 vanishes for cot > - r .  
Evaluating the residues, one h d s  that 

(4.15) 
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where L:-,(x) is the generalized Laguerre polynomial 
n n(n-1) x xn-l 

p (x) = _-_____ + ... + (-)n-l-----  
n-1 l! 2! l! (n-1)!7 

with the recurrence property 

For n-tm, 

In  (4.15) the first term is the solution obtained if in the differential equa- 
tion (2.14) one lets Q --f co, co + co with Q/c0 finite, and applies the boundary 
conditions $ = 1 on 2 = 0, $ = o(ex) for x-tco. Since $ = 1 on x = 0 implies 
t > 0, this limit corresponds to r -+ co with x fixed; it therefore seems probable 
(although it has not been proved) that the second part of the solution -+ 0 as 
r -+ co, and in this case the first, term can be regarded as the ultimate steady- 
state form of the solution. It can be shown that the series in (4.15) converges for 
cot > r, although not absolutely; and that if we sum and then let x -+ 0 the second 
part of the solution is O(x). This last remark means that in the perturbation 
density, p1 = - yQ2e;2$z, the dominant term for x -+  0 is the logarithmic 
singularity implied by 

2x 22 r - + I  Y - o = i+-iog-+oo(x). 
( 3 6 7 ; )  Y Y 

The pressure is singular in the same way. This singularity (which appears for all 
source strengths), is due to the arrival at the axis of the wavelets reflected by the 
radial pressure gradient. Note that in (4.16) the high-frequency components of 
the solution are in fact split into outgoing and incoming waves. 

5. An example 
Consider the family of solutions $(,,,) (m an integer 2 0) for which 

hd07 7 )  = rrnH(7). 

For m = 0 the wave-front singularity is strong, and the series in (4.15) converges 
very slowly throughout the field: corresponding series solutions can be written 
for all m, and the convergence improves as m increases, but form large the growth 
of outflow with time is likely to be the dominant feature of the field. Hence 
m = 1 was chosen here; and for convenience y was taken to be 2. The equations 
which correspond to (4.14) and (4.15) are then 

= +e*xsin { 2 ( ~ ~  - z)*} ( 7 2 -  x small), (5.1) 
sin(2(n+ 1)*7}Li-1(~) 

(n + 1)aP7 
(5.2) and $(1) = 7{ 1 + xezEi( - x)} - +x 2 

n=l  

where Ei denotes the exponential integral. 



A cylindrical sound pulse in a rotating gas 647 

The series was computed as follows. A large value n = N was chosen, close to 
a zero of sin {2(n + l)t 7)  for computations with 7 constant, and close to a zero of 
Ai-l(x) for computations with x constant. For n < N the terms were computed 
exactly, the recurrence formula of the Laguerre polynomials being used. For 
n > N the asymptotic forms corresponding to (4.16) were used, and to the same 
degree of approximation, summation could be replaced by integration. The sum 
for n > N could then be expressed in terms of tabulated Fresnel integrals (Jahnke 
& Emde, 1945). Two values of N were used for each point, one near 20 and the 
other near 40, and the difference A$(-,,/$(-,,(O, 7 )  was less than 2 yo in all cases. 

7 

FIUURE 2. The variation of @(,) with T at z = 1-0. --- , T [  1 +zeZEi( - z)]; 
-I $(1,(1.0, 7) .  

A more severe check was provided by values at x = 72, where 8$&x --f w; here 
the exact value is zero, and the computati0n.s with the larger N gave: 

7 l l J 2  1 4 2  
7)/@(d09 7 )  0.005 0.01 0.02 

Because @(m,(z, 7 )  = i3$(m+l)(x, 7)/a7, the function 
(i) As a function whose time derivative (indicated by figure 2 )  is proportional 

(ii) As the stream function $ of the flow for which 

can be interpreted: 

to the solution $(o, of the previous section. 

f ( t )  = €ant, R(t) = (2E!2/po(0)}~t~.  

f ( t )  = &EQt2, R(t) = {€sz/po(o))b. 

(iii) As the outflow q of the flow for which 

Let us adopt the second of these viewpoints and assume that E > 0. Figure 2 

shows the variation of hit with time at x = 1, and we take $ = rpo u1 dt as a 

measure of the radial displacement of the circle of fluid particles which lies 
L. 
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initially at x = 1. As the shock passes by, the circle surges outwards behind it 
(at first with infinite velocity), but this effect is soon checked by the spring-like 
Coriolis force, and also by a fall in density which makes the pressure gradient 
p ,  more effective, so that the circle moves inwards again. (According to the wave- 
front approximation (5.1), p1 first becomes negative at x = 1.0 when T = 1.2.) 
Thereafter the particles’ mean motion is outward, because of the continuing 
efflux from the source, but they oscillate about the mean trajectory shown by the 
straight line in figure 2.  This line is the ‘infinite rotation, infinite sound speed’ 
solution given by the first term of (5.2). 

X 

FIGURE 3. Profiles of @(l) at  constant 7. - , full solution, equation (5.2) ; - - - -, 
wave-front approximation, equation (5.1) ; - - -, irrotational-flow solution, equation 
(5.3). 

I 7 = 1/12 ? = l  \ 

0 0.5 1 -0 
x 

FIUURE 4. Profiles of e-z@Gr(l) at  constant 7. -, e -Zl / lh ) (z ,  7 ) ;  

_-_ , irrotational-flow solution, equation (5.3). 
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Figures 3 and 4 show profiles of $tu and e-x$(l) a t  constant r ;  the wave-front 
approximation (5.1) is shown also, and the shape of the irrotational solution 

= (r2-z)i 
serves as a datum. Since 

(5.3) 

the slope of the curves in figure 3 indicates the (absolute) density perturbation: 
the figure also shows the effect of rotation in gradually distorting the $-cl)-profile 
from its shape in the irrotational case. The most striking feature is perhaps the 
appearance at T = 4 2  of a wide region of negative perturbation density (rare- 
faction) between the regions of strongly positive p1 near the axis and the wave 
front. Of course, the presence of these strong condensation regions (which we 
attribute to the convergence on the axis of the reflected wavelets, and to the 
negative damping of the absolute density increment behind the wave front) makes 
the appearance of an intermediate rarefaction region inevitable. 

The relative perturbation e-z$(l) of figure 4 is a measure, not only of the area 
displaced by a fluid circle, but also of the loss of circulation and gain of entropy 
at  a station x = constant. For the circles of fluid particles carry their initial 
circulation and entropy with them, and 

where S is the specific entropy. (Alternatively, e-f$(l) may be associated with the 
volumetric outflow rul of case (iii) above.) The figure emphasizes the resistance to 
small disturbances of the rotating mass of gas: the relative perturbations decay 
rapidly as one proceeds outwards from the axis. 

I am indebted to Prof. H. W. Liepmann for suggesting this problem, to Mrs D. 
Diamond for the numerical computations, and to a referee for stringent and 
appropriate criticism of a first draft of this paper. The work was partly sponsored 
by the Office of Naval Research under Contract Nonr-220 (21). 
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